Testing for prime
Jump to navigation
Jump to search
Fermat's little theorem tells us that
xp mod p = x
if p is prime for x<p
The converse is that if
xp mod p ≠ x
then p is not prime. If the equality holds for some value of x then p is probably a prime. If the equality holds for two values of x then it is even more probable that p is prime. For these questions you can assume that if 2p mod p =2 then p is prime.
Probable primes
Decide which of these numbers is prime:
- 12
- 101
- 4249599619
- 5175703781
- 35563611982942194303
- 82793885002522383103
let pl = [ 12n, 101n, 4249599619n, 5175703781n,
35563611982942194303n, 82793885002522383103n
];
document.body.append(...
pl.map(n=>{
let isPrime = n%2n===1n;
ret = document.createElement('div');
ret.innerHTML = `${n} is prime: ${isPrime}`;
return ret;
})
);
//raise n to the power e, modulo m
function pow(n,e,m){
if (e<=0) return 1n;
let r = pow(n,e/2n,m);
return (r*r*(e%2n===1n?n:1n))%m;
}
let pl = [ 12n, 101n, 4249599619n, 5175703781n,
35563611982942194303n, 82793885002522383103n
];
document.body.append(...
pl.map(n=>{
let isPrime = pow(2n,n,n)===2n;
ret = document.createElement('div');
ret.innerHTML = `${n} is prime: ${isPrime}`;
return ret;
})
);
//raise n to the power e, modulo m
function pow(n,e,m){
if (e<=0) return 1n;
let r = pow(n,e/2n,m);
return (r*r*(e%2n===1n?n:1n))%m;
}
Prime Billion
Find the first prime bigger than 1 billion
let b = 1000000000n;
while (b%2n===0n){
b = b+1n;
}
document.body.innerHTML = `${b}`
//raise n to the power e, modulo m
function pow(n,e,m){
if (e<=0) return 1n;
let r = pow(n,e/2n,m);
return (r*r*(e%2n===1n?n:1n))%m;
}
let b = 1000000000n;
while (pow(2n,b,b)!==2n){
b = b+1n;
}
document.body.innerHTML = `${b}`
//raise n to the power e, modulo m
function pow(n,e,m){
if (e<=0) return 1n;
let r = pow(n,e/2n,m);
return (r*r*(e%2n===1n?n:1n))%m;
}
Prime Googol
- A googol is 1 followed by 100 zeros.
- Find the first prime bigger than 1 googol
let b = 1000000000n;
while (b%2n===0n){
b = b+1n;
}
document.body.innerHTML = `${b}`
//raise n to the power e, modulo m
function pow(n,e,m){
if (e<=0) return 1n;
let r = pow(n,e/2n,m);
return (r*r*(e%2n===1n?n:1n))%m;
}
let b = pow(10n,100n);
while (pow(2n,b,b)!==2n){
b = b+1n;
}
document.body.innerHTML = `${b}`
//raise n to the power e, modulo m
function pow(n,e,m){
if (e<=0) return 1n;
let r = pow(n,e/2n,m);
let ret = r*r*(e%2n===1n?n:1n);
if (m===undefined)
return ret;
return ret%m
}
Primes per Thousand
- For the 1000 numbers from 1000000 to 1000999 how many are prime?
let b = pow(10n,6n);
let pc = 0;
for(let i=0n;i<1000n;i++){
let p = b+i;
if (pow(2n,p,p)===2n)
pc++;
}
document.body.innerHTML = `${pc}`
//raise n to the power e, modulo m
function pow(n,e,m){
if (e<=0) return 1n;
let r = pow(n,e/2n,m);
let ret = r*r*(e%2n===1n?n:1n);
if (m===undefined)
return ret;
return ret%m
}
Primes per Thousand Again
- How primes are there in the thousand number starting:
- 1000000 (106),10000000,100000000, ... 1000000000000 (1012)
let ls = [];
for(let j=6n;j<=12n;j++){
let b = pow(10n,j);
let pc = 0;
for(let i=0n;i<1000n;i++){
let p = b+i;
if (p%2n!==0n)
pc++;
}
ls.push(`<tr><td>${b}</td><td>${pc}</td></tr>`);
}
document.body.innerHTML = `<table>${ls.join('')}</table>`
//raise n to the power e, modulo m
//m is optional
function pow(n,e,m){
if (e<=0) return 1n;
let r = pow(n,e/2n,m);
let ret = r*r*(e%2n===1n?n:1n);
if (m===undefined)
return ret;
return ret%m
}
let ls = [];
for(let j=6n;j<=12n;j++){
let b = pow(10n,j);
let pc = 0;
for(let i=0n;i<1000n;i++){
let p = b+i;
if (pow(2n,p,p)===2n)
pc++;
}
ls.push(`<tr><td>${b}</td><td>${pc}</td></tr>`);
}
document.body.innerHTML = `<table>${ls.join('')}</table>`
//raise n to the power e, modulo m
//m is optional
function pow(n,e,m){
if (e<=0) return 1n;
let r = pow(n,e/2n,m);
let ret = r*r*(e%2n===1n?n:1n);
if (m===undefined)
return ret;
return ret%m
}