Difference between revisions of "Encryption"
Jump to navigation
Jump to search
(One intermediate revision by the same user not shown) | |||
Line 130: | Line 130: | ||
<pre id='shellbody' data-qtp='DOM'></pre> | <pre id='shellbody' data-qtp='DOM'></pre> | ||
==Splitting the exponent== | ==Splitting the exponent== | ||
<div class='qu' data-width=300> | <div class='qu' data-width=300 data-height=500> | ||
Fermat's little theorem tells us that | Fermat's little theorem tells us that | ||
x<sup>p</sup> mod p = x | x<sup>p</sup> mod p = x | ||
Line 138: | Line 138: | ||
<pre class='usr'> | <pre class='usr'> | ||
document.body.append( | document.body.append( | ||
mkInput('p',' | mkInput('p','1000000007'), | ||
mkInput('m',' | mkInput('scramble','112233'), | ||
mkInput(' | $m('button',{onclick:()=>{ | ||
document.getElementById('unscramble').value = | |||
modInverse(getbig('scramble'),getbig('p')-1n); | |||
}},'calculate unscramble'), | |||
mkInput('unscramble',''), | |||
mkInput('secret','888'), | |||
$m('button',{onclick:function(){ | $m('button',{onclick:function(){ | ||
document.getElementById(' | document.getElementById('scrambled').value = | ||
pow(getbig('secret'),getbig('scramble'),getbig('p')); | |||
}},` | }},`scramble secret`), | ||
$m(' | mkInput('scrambled',''), | ||
mkInput(' | $m('button',{onclick:function(){ | ||
document.getElementById('tada').value = | |||
pow(getbig('scrambled'),getbig('unscramble'),getbig('p')); | |||
}},`unscramble scrambled`), | |||
mkInput('tada','') | |||
); | ); | ||
Line 182: | Line 191: | ||
//Create an element with tagname and properties | //Create an element with tagname and properties | ||
//children can be a string (innerHTML) or a list of elements | //children can be a string (innerHTML) or a list of elements | ||
const $i = document.getElementById; | |||
function $m(tag,prop,children){ | function $m(tag,prop,children){ | ||
let ret = document.createElement(tag); | let ret = document.createElement(tag); |
Latest revision as of 22:20, 17 August 2022
Fermat's Little Theorem
Fermat's little theorem tells us that
xp mod p = x
if p
is prime for x<p
Verify this by trying prime and non-prime values for p. You can can generate prime numbers from https://bigprimes.org/
document.body.append( mkInput('p','101'), mkInput('m','3'), $m('button',{onclick:function(){ document.getElementById('result').value = pow(getbig('m'),getbig('p'),getbig('p')); }},`m<sup>p</sup> mod p`), $m('input',{id:'result'}) ); //raise n to the power e, modulo m function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; } //Create an element with tagname and properties //children can be a string (innerHTML) or a list of elements function $m(tag,prop,children){ let ret = document.createElement(tag); for(let k in prop) ret[k] = prop[k]; if (typeof(children)==='string') ret.innerHTML = children; if (Array.isArray(children)) for(let c of children) ret.append(c); return ret; } //Get the value in element with id, convert it to a BigInt function getbig(id){return BigInt(document.getElementById(id).value)} //Return a div containing label and input. id is shown in the label function mkInput(id,value){ return $m('div',{},[$m('label',{},id),$m('input',{id,value})]); }
Generate public/private key pairs
document.body.append( addHiddenInput('p','101'), addHiddenInput('q','103'), addInput('e','7'), $m('button',{onclick:()=>{ $i('d').value=modInverse(gb('e'),(gb('p')-1n)*(gb('q')-1n)); $i('n').value=gb('p')*gb('q'); }},'Generate public/private key'), addHiddenInput('d',''), addInput('n',''), addInput('message','123'), $m('button',{onclick:()=>{ $i('encrypted').value=pow(gb('message'),gb('e'),gb('n')); }},'encrypt with public key'), addInput('encrypted',''), $m('button',{onclick:()=>{ $i('decrypted').value=pow(gb('encrypted'),gb('d'),gb('n')); }},'decrypt with private key'), addInput('decrypted','') ); function modInverse(a, m){ a = (a%m+m)%m; if (!a||m<2n) { return NaN // invalid input } // find the gcd const s=[] let b=m while(b) { [a,b] = [b,a%b] s.push({a, b}) } if (a!==1n) { return NaN // inverse does not exists } // find the inverse let x = 1n let y = 0n for(let i=s.length-2; i>=0;--i) { [x,y] = [y,x-y*(s[i].a/s[i].b)] } return (y%m+m)%m } //Utility functions function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; } function $i(id){return document.getElementById(id);} function $m(tag,prop,children){ let ret = document.createElement(tag); for(let k in prop) ret[k] = prop[k]; if (typeof(children)==='string') ret.innerHTML = children; if (Array.isArray(children)) for(let c of children) ret.append(c); return ret; } function gb(id){return BigInt(document.getElementById(id).value)} function addInput(id,value){ return $m('div',{},[$m('label',{},`${id} `),$m('input',{id,value})]); } function addHiddenInput(id,value){ return $m('div',{},[ $m('label',{},`${id} `), $m('input',{id,value,type:'password'}), $m('span',{onclick:()=>{$i(id).removeAttribute('type')}},' show') ]); }
Splitting the exponent
Fermat's little theorem tells us that
xp mod p = x
if p
is prime for x<p
Verify this by trying prime and non-prime values for p. You can can generate prime numbers from https://bigprimes.org/
document.body.append( mkInput('p','1000000007'), mkInput('scramble','112233'), $m('button',{onclick:()=>{ document.getElementById('unscramble').value = modInverse(getbig('scramble'),getbig('p')-1n); }},'calculate unscramble'), mkInput('unscramble',''), mkInput('secret','888'), $m('button',{onclick:function(){ document.getElementById('scrambled').value = pow(getbig('secret'),getbig('scramble'),getbig('p')); }},`scramble secret`), mkInput('scrambled',''), $m('button',{onclick:function(){ document.getElementById('tada').value = pow(getbig('scrambled'),getbig('unscramble'),getbig('p')); }},`unscramble scrambled`), mkInput('tada','') ); //raise n to the power e, modulo m function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; } function modInverse(a, m){ a = (a%m+m)%m; if (!a||m<2n) { return NaN // invalid input } // find the gcd const s=[] let b=m while(b) { [a,b] = [b,a%b] s.push({a, b}) } if (a!==1n) { return NaN // inverse does not exists } // find the inverse let x = 1n let y = 0n for(let i=s.length-2; i>=0;--i) { [x,y] = [y,x-y*(s[i].a/s[i].b)] } return (y%m+m)%m } //Create an element with tagname and properties //children can be a string (innerHTML) or a list of elements const $i = document.getElementById; function $m(tag,prop,children){ let ret = document.createElement(tag); for(let k in prop) ret[k] = prop[k]; if (typeof(children)==='string') ret.innerHTML = children; if (Array.isArray(children)) for(let c of children) ret.append(c); return ret; } //Get the value in element with id, convert it to a BigInt function getbig(id){return BigInt(document.getElementById(id).value)} //Return a div containing label and input. id is shown in the label function mkInput(id,value){ return $m('div',{},[$m('label',{},id),$m('input',{id,value})]); }