Difference between revisions of "Encryption"
Jump to navigation
Jump to search
Line 46: | Line 46: | ||
<div class=qu> | <div class=qu> | ||
<pre class=usr> | <pre class=usr> | ||
let addInput = (id,value) => { | |||
return $m('div',{},[$m('label',{},id),$m('input',{id,value})]); | |||
} | } | ||
document.body.append( | |||
addInput('p','101'), | |||
addInput('q','103'), | |||
addInput('e','3'), | |||
$m('button',{},'Generate public/private key'), | |||
addInput('d',''), | |||
addInput('n','') | |||
); | |||
function modInverse(a, m){ | function modInverse(a, m){ | ||
Line 80: | Line 83: | ||
return (y % m + m) % m | return (y % m + m) % m | ||
} | } | ||
let getbig | //Utility functions | ||
function pow(n,e,m){ | |||
return $m('div',{},[$m('label',{},id),$m('input',{id,value})]); | if (e<=0) return 1n; | ||
let r = pow(n,e/2n,m); | |||
return (r*r*(e%2n===1n?n:1n))%m; | |||
} | |||
function $m(tag,prop,children){ | |||
let ret = document.createElement(tag); | |||
for(let k in prop) | |||
ret[k] = prop[k]; | |||
if (typeof(children)==='string') | |||
ret.innerHTML = children; | |||
if (Array.isArray(children)) | |||
for(let c of children) | |||
ret.append(c); | |||
return ret; | |||
} | |||
function getbig(id){return BigInt(document.getElementById(id).value)} | |||
function addInput(id,value){ | |||
return $m('div',{},[$m('label',{},`${id} `),$m('input',{id,value})]); | |||
} | } | ||
</pre> | </pre> | ||
</div> | </div> |
Revision as of 22:26, 19 September 2021
Fermat's Little Theorem
Fermat's little theorem tells us that
xp mod p = x
if p
is prime for x<p
Verify this by trying prime and non-prime values for p. You can can generate prime numbers from https://bigprimes.org/
document.body.append( addInput('p','101'), addInput('m','3'), $m('button',{onclick:function(){ document.getElementById('result').value = pow(getbig('m'),getbig('p'),getbig('p')); }},`m<sup>p</sup> mod p`), $m('input',{id:'result'}) ); //Utility functions function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; } function $m(tag,prop,children){ let ret = document.createElement(tag); for(let k in prop) ret[k] = prop[k]; if (typeof(children)==='string') ret.innerHTML = children; if (Array.isArray(children)) for(let c of children) ret.append(c); return ret; } function getbig(id){return BigInt(document.getElementById(id).value)} function addInput(id,value){ return $m('div',{},[$m('label',{},id),$m('input',{id,value})]); }
Generate public/private key pairs
let addInput = (id,value) => { return $m('div',{},[$m('label',{},id),$m('input',{id,value})]); } document.body.append( addInput('p','101'), addInput('q','103'), addInput('e','3'), $m('button',{},'Generate public/private key'), addInput('d',''), addInput('n','') ); function modInverse(a, m){ a = (a % m + m) % m if (!a || m < 2n) { return NaN // invalid input } // find the gcd const s = [] let b = m while(b) { [a, b] = [b, a % b] s.push({a, b}) } if (a !== 1n) { return NaN // inverse does not exists } // find the inverse let x = 1n let y = 0n for(let i = s.length - 2; i >= 0; --i) { [x, y] = [y, x - y * (s[i].a / s[i].b)] } return (y % m + m) % m } //Utility functions function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; } function $m(tag,prop,children){ let ret = document.createElement(tag); for(let k in prop) ret[k] = prop[k]; if (typeof(children)==='string') ret.innerHTML = children; if (Array.isArray(children)) for(let c of children) ret.append(c); return ret; } function getbig(id){return BigInt(document.getElementById(id).value)} function addInput(id,value){ return $m('div',{},[$m('label',{},`${id} `),$m('input',{id,value})]); }