Encryption: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
| Line 46: | Line 46: | ||
<div class=qu> | <div class=qu> | ||
<pre class=usr> | <pre class=usr> | ||
let addInput = (id,value) => { | |||
return $m('div',{},[$m('label',{},id),$m('input',{id,value})]); | |||
} | } | ||
document.body.append( | |||
addInput('p','101'), | |||
addInput('q','103'), | |||
addInput('e','3'), | |||
$m('button',{},'Generate public/private key'), | |||
addInput('d',''), | |||
addInput('n','') | |||
); | |||
function modInverse(a, m){ | function modInverse(a, m){ | ||
| Line 80: | Line 83: | ||
return (y % m + m) % m | return (y % m + m) % m | ||
} | } | ||
let getbig | //Utility functions | ||
function pow(n,e,m){ | |||
return $m('div',{},[$m('label',{},id),$m('input',{id,value})]); | if (e<=0) return 1n; | ||
let r = pow(n,e/2n,m); | |||
return (r*r*(e%2n===1n?n:1n))%m; | |||
} | |||
function $m(tag,prop,children){ | |||
let ret = document.createElement(tag); | |||
for(let k in prop) | |||
ret[k] = prop[k]; | |||
if (typeof(children)==='string') | |||
ret.innerHTML = children; | |||
if (Array.isArray(children)) | |||
for(let c of children) | |||
ret.append(c); | |||
return ret; | |||
} | |||
function getbig(id){return BigInt(document.getElementById(id).value)} | |||
function addInput(id,value){ | |||
return $m('div',{},[$m('label',{},`${id} `),$m('input',{id,value})]); | |||
} | } | ||
</pre> | </pre> | ||
</div> | </div> | ||
Revision as of 22:26, 19 September 2021
Fermat's Little Theorem
Fermat's little theorem tells us that
xp mod p = x
if p is prime for x<p
Verify this by trying prime and non-prime values for p. You can can generate prime numbers from https://bigprimes.org/
document.body.append(
addInput('p','101'),
addInput('m','3'),
$m('button',{onclick:function(){
document.getElementById('result').value =
pow(getbig('m'),getbig('p'),getbig('p'));
}},`m<sup>p</sup> mod p`),
$m('input',{id:'result'})
);
//Utility functions
function pow(n,e,m){
if (e<=0) return 1n;
let r = pow(n,e/2n,m);
return (r*r*(e%2n===1n?n:1n))%m;
}
function $m(tag,prop,children){
let ret = document.createElement(tag);
for(let k in prop)
ret[k] = prop[k];
if (typeof(children)==='string')
ret.innerHTML = children;
if (Array.isArray(children))
for(let c of children)
ret.append(c);
return ret;
}
function getbig(id){return BigInt(document.getElementById(id).value)}
function addInput(id,value){
return $m('div',{},[$m('label',{},id),$m('input',{id,value})]);
}
Generate public/private key pairs
let addInput = (id,value) => {
return $m('div',{},[$m('label',{},id),$m('input',{id,value})]);
}
document.body.append(
addInput('p','101'),
addInput('q','103'),
addInput('e','3'),
$m('button',{},'Generate public/private key'),
addInput('d',''),
addInput('n','')
);
function modInverse(a, m){
a = (a % m + m) % m
if (!a || m < 2n) {
return NaN // invalid input
}
// find the gcd
const s = []
let b = m
while(b) {
[a, b] = [b, a % b]
s.push({a, b})
}
if (a !== 1n) {
return NaN // inverse does not exists
}
// find the inverse
let x = 1n
let y = 0n
for(let i = s.length - 2; i >= 0; --i) {
[x, y] = [y, x - y * (s[i].a / s[i].b)]
}
return (y % m + m) % m
}
//Utility functions
function pow(n,e,m){
if (e<=0) return 1n;
let r = pow(n,e/2n,m);
return (r*r*(e%2n===1n?n:1n))%m;
}
function $m(tag,prop,children){
let ret = document.createElement(tag);
for(let k in prop)
ret[k] = prop[k];
if (typeof(children)==='string')
ret.innerHTML = children;
if (Array.isArray(children))
for(let c of children)
ret.append(c);
return ret;
}
function getbig(id){return BigInt(document.getElementById(id).value)}
function addInput(id,value){
return $m('div',{},[$m('label',{},`${id} `),$m('input',{id,value})]);
}