Encryption
Jump to navigation
Jump to search
Fermat's Little Theorem
function pow(n,e,m){ if (e<=0) return 1n; let h = e/2n; let r = pow(n,h,m); r = (r*r) % m; if (e % 2n === 1n){ return (n * r) % m; } return r; } function modInverse(a, m){ a = (a % m + m) % m if (!a || m < 2n) { return NaN // invalid input } // find the gcd const s = [] let b = m while(b) { [a, b] = [b, a % b] s.push({a, b}) } if (a !== 1n) { return NaN // inverse does not exists } // find the inverse let x = 1n let y = 0n for(let i = s.length - 2; i >= 0; --i) { [x, y] = [y, x - y * (s[i].a / s[i].b)] } return (y % m + m) % m }