Encryption
1) Fermat's Little Theorem
Input
xxxxxxxxxx
function pow(n,e,m){
if (e<=0) return 1n;
let h = e/2n;
let r = pow(n,h,m);
r = (r*r) % m;
if (e % 2n === 1n){
return (n * r) % m;
}
return r;
}
function modInverse(a, m){
a = (a % m + m) % m
if (!a || m < 2n) {
return NaN // invalid input
}
// find the gcd
const s = []
let b = m
while(b) {
[a, b] = [b, a % b]
s.push({a, b})
}
if (a !== 1n) {
return NaN // inverse does not exists
}
// find the inverse
let x = 1n
let y = 0n
for(let i = s.length - 2; i >= 0; --i) {
[x, y] = [y, x - y * (s[i].a / s[i].b)]
}
return (y % m + m) % m
}
Output
function pow(n,e,m){ if (e<=0) return 1n; let h = e/2n; let r = pow(n,h,m); r = (r*r) % m; if (e % 2n === 1n){ return (n * r) % m; } return r; } function modInverse(a, m){ a = (a % m + m) % m if (!a || m < 2n) { return NaN // invalid input } // find the gcd const s = [] let b = m while(b) { [a, b] = [b, a % b] s.push({a, b}) } if (a !== 1n) { return NaN // inverse does not exists } // find the inverse let x = 1n let y = 0n for(let i = s.length - 2; i >= 0; --i) { [x, y] = [y, x - y * (s[i].a / s[i].b)] } return (y % m + m) % m }