Encryption
Fermat's Little Theorem
Fermat's little theorem tells us that
xp mod p = x
if p
is prime for x<p
document.body.append( addInput('p','101'), addInput('m','3'), $m('button',{onclick:function(){ document.getElementById('result').value = pow(getbig('m'),getbig('p'),getbig('p')); }},`m<sup>p</sup> mod p`), $m('input',{id:'result'}) ); //Utility functions function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; } function $m(tag,prop,children){ let ret = document.createElement(tag); for(let k in prop) ret[k] = prop[k]; if (typeof(children)==='string') ret.innerHTML = children; if (Array.isArray(children)) for(let c of children) ret.append(c); return ret; } function getbig(id){return BigInt(document.getElementById(id).value)} function addInput(id,value){ return $m('div',{},[$m('label',{},id),$m('input',{id,value})]); }
function pow(n,e,m){ if (e<=0) return 1n; let h = e/2n; let r = pow(n,h,m); r = (r*r) % m; if (e % 2n === 1n){ return (n * r) % m; } return r; } function modInverse(a, m){ a = (a % m + m) % m if (!a || m < 2n) { return NaN // invalid input } // find the gcd const s = [] let b = m while(b) { [a, b] = [b, a % b] s.push({a, b}) } if (a !== 1n) { return NaN // inverse does not exists } // find the inverse let x = 1n let y = 0n for(let i = s.length - 2; i >= 0; --i) { [x, y] = [y, x - y * (s[i].a / s[i].b)] } return (y % m + m) % m } let getbig = id => BigInt(document.getElementById(id).value); let addInput = (id,value) => { return $m('div',{},[$m('label',{},id),$m('input',{id,value})]); } document.body.append(addInput('p','101'),addInput('q','103'));