Encryption
1) Fermat's Little Theorem
Fermat's little theorem tells us that
xp mod p = x
if p
is prime for x<p
Verify this by trying prime and non-prime values for p. You can can generate prime numbers from https://bigprimes.org/
Input
xxxxxxxxxx
document.body.append(
addInput('p','101'),
addInput('m','3'),
$m('button',{onclick:function(){
document.getElementById('result').value =
pow(getbig('m'),getbig('p'),getbig('p'));
}},`m<sup>p</sup> mod p`),
$m('input',{id:'result'})
);
//Utility functions
function pow(n,e,m){
if (e<=0) return 1n;
let r = pow(n,e/2n,m);
return (r*r*(e%2n===1n?n:1n))%m;
}
function $m(tag,prop,children){
let ret = document.createElement(tag);
for(let k in prop)
ret[k] = prop[k];
if (typeof(children)==='string')
ret.innerHTML = children;
if (Array.isArray(children))
for(let c of children)
ret.append(c);
return ret;
}
function getbig(id){return BigInt(document.getElementById(id).value)}
function addInput(id,value){
return $m('div',{},[$m('label',{},id),$m('input',{id,value})]);
}
Output
document.body.append( addInput('p','101'), addInput('m','3'), $m('button',{onclick:function(){ document.getElementById('result').value = pow(getbig('m'),getbig('p'),getbig('p')); }},`m<sup>p</sup> mod p`), $m('input',{id:'result'}) ); //Utility functions function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; } function $m(tag,prop,children){ let ret = document.createElement(tag); for(let k in prop) ret[k] = prop[k]; if (typeof(children)==='string') ret.innerHTML = children; if (Array.isArray(children)) for(let c of children) ret.append(c); return ret; } function getbig(id){return BigInt(document.getElementById(id).value)} function addInput(id,value){ return $m('div',{},[$m('label',{},id),$m('input',{id,value})]); }
2) Generate public/private key pairs
Input
xxxxxxxxxx
document.body.append(
addInput('p','101'),
addInput('q','103'),
addInput('e','7'),
$m('button',{onclick:()=>{
$i('d').value=modInverse(gb('e'),(gb('p')-1n)*(gb('q')-1n));
$i('n').value=gb('p')*gb('q');
}},'Generate public/private key'),
addInput('d',''),
addInput('n',''),
addInput('message','123'),
$m('button',{onclick:()=>{
$i('encrypted').value=pow(gb('message'),gb('e'),gb('m'));
}},'encrypt with public key'),
addInput('encrypted',''),
);
function modInverse(a, m){
Output
document.body.append( addInput('p','101'), addInput('q','103'), addInput('e','7'), $m('button',{onclick:()=>{ $i('d').value=modInverse(gb('e'),(gb('p')-1n)*(gb('q')-1n)); $i('n').value=gb('p')*gb('q'); }},'Generate public/private key'), addInput('d',''), addInput('n',''), addInput('message','123'), $m('button',{onclick:()=>{ $i('encrypted').value=pow(gb('message'),gb('e'),gb('m')); }},'encrypt with public key'), addInput('encrypted',''), ); function modInverse(a, m){ a = (a%m+m)%m; if (!a||m<2n) { return NaN // invalid input } // find the gcd const s=[] let b=m while(b) { [a,b] = [b,a%b] s.push({a, b}) } if (a!==1n) { return NaN // inverse does not exists } // find the inverse let x = 1n let y = 0n for(let i=s.length-2; i>=0;--i) { [x,y] = [y,x-y*(s[i].a/s[i].b)] } return (y%m+m)%m } //Utility functions function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; } function $i(id){return document.getElementById(id);} function $m(tag,prop,children){ let ret = document.createElement(tag); for(let k in prop) ret[k] = prop[k]; if (typeof(children)==='string') ret.innerHTML = children; if (Array.isArray(children)) for(let c of children) ret.append(c); return ret; } function gb(id){return BigInt(document.getElementById(id).value)} function addInput(id,value){ return $m('div',{},[$m('label',{},`${id} `),$m('input',{id,value})]); }