Difference between revisions of "Testing for prime"
Jump to navigation
Jump to search
(Created page with "<pre id='shellbody' data-qtp='DOM'></pre> ==Probable primes== <div class='qu' data-width=300> Fermat's little theorem tells us that x<sup>p</sup> mod p = x if <code>p</code>...") |
|||
Line 8: | Line 8: | ||
The converse is that if | The converse is that if | ||
x<sup>p</sup> mod p ≠ x | x<sup>p</sup> mod p ≠ x | ||
the p is | then p is not prime. If the equality holds for some value of x then p is <i>probably</i> a prime. If the equality holds for two values of x then it is even more probable that p is prime. For these questions you can ignore that probability. | ||
Decide which of these numbers is prime: | |||
*12 | |||
*101 | |||
*4249599619 | |||
*5175703781 | |||
*35563611982942194303 | |||
*82793885002522383103 | |||
*629817083229352620706184583313 | |||
*984141389525199908877737938759 | |||
<pre class='usr'> | <pre class='usr'> | ||
document.body.append( | let pl = [ 12n, 101n, 4249599619n, 5175703781n, | ||
35563611982942194303n, 82793885002522383103n, | |||
629817083229352620706184583313n, | |||
984141389525199908877737938759n | |||
document. | ]; | ||
document.body.append(... | |||
pl.map(n=>{ | |||
let isPrime = n%2===1; | |||
ret = document.createElement('div'); | |||
ret.innerHTML = `${n} is prime: ${isPrime}`; | |||
}); | |||
); | ); | ||
Line 28: | Line 39: | ||
return (r*r*(e%2n===1n?n:1n))%m; | return (r*r*(e%2n===1n?n:1n))%m; | ||
} | } | ||
</pre> | |||
<pre class='ans'> | |||
let pl = [ 12n, 101n, 4249599619n, 5175703781n, | |||
35563611982942194303n, 82793885002522383103n, | |||
629817083229352620706184583313n, | |||
984141389525199908877737938759n | |||
]; | |||
document.body.append(... | |||
pl.map(n=>{ | |||
let isPrime = pow(2,n,n)===2; | |||
ret = document.createElement('div'); | |||
ret.innerHTML = `${n} is prime: ${isPrime}`; | |||
}); | |||
); | |||
// | //raise n to the power e, modulo m | ||
function pow(n,e,m){ | |||
function | if (e<=0) return 1n; | ||
let r = pow(n,e/2n,m); | |||
return (r*r*(e%2n===1n?n:1n))%m; | |||
if ( | |||
/ | |||
return | |||
} | } | ||
</pre> | </pre> | ||
</div> | </div> |
Revision as of 20:14, 26 September 2021
Probable primes
Fermat's little theorem tells us that
xp mod p = x
if p
is prime for x<p
The converse is that if
xp mod p ≠ x
then p is not prime. If the equality holds for some value of x then p is probably a prime. If the equality holds for two values of x then it is even more probable that p is prime. For these questions you can ignore that probability.
Decide which of these numbers is prime:
- 12
- 101
- 4249599619
- 5175703781
- 35563611982942194303
- 82793885002522383103
- 629817083229352620706184583313
- 984141389525199908877737938759
let pl = [ 12n, 101n, 4249599619n, 5175703781n, 35563611982942194303n, 82793885002522383103n, 629817083229352620706184583313n, 984141389525199908877737938759n ]; document.body.append(... pl.map(n=>{ let isPrime = n%2===1; ret = document.createElement('div'); ret.innerHTML = `${n} is prime: ${isPrime}`; }); ); //raise n to the power e, modulo m function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; }
let pl = [ 12n, 101n, 4249599619n, 5175703781n, 35563611982942194303n, 82793885002522383103n, 629817083229352620706184583313n, 984141389525199908877737938759n ]; document.body.append(... pl.map(n=>{ let isPrime = pow(2,n,n)===2; ret = document.createElement('div'); ret.innerHTML = `${n} is prime: ${isPrime}`; }); ); //raise n to the power e, modulo m function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; }