Difference between revisions of "Testing for prime"

From ProgZoo
Jump to navigation Jump to search
Line 1: Line 1:
<pre id='shellbody' data-qtp='DOM'></pre>
<pre id='shellbody' data-qtp='DOM'></pre>
==Probable primes==
<div class='qu' data-width=300>
Fermat's little theorem tells us that
Fermat's little theorem tells us that
  x<sup>p</sup> mod p = x
  x<sup>p</sup> mod p = x
Line 10: Line 8:
then p is not prime. If the equality holds for some value of x then p is <i>probably</i> a prime. If the equality holds for two values of x then it is even more probable that p is prime. For these questions you can ignore that probability.
then p is not prime. If the equality holds for some value of x then p is <i>probably</i> a prime. If the equality holds for two values of x then it is even more probable that p is prime. For these questions you can ignore that probability.


==Probable primes==
<div class='qu' data-width=300>
Decide which of these numbers is prime:
Decide which of these numbers is prime:
*12
*12
Line 17: Line 17:
*35563611982942194303
*35563611982942194303
*82793885002522383103
*82793885002522383103
*629817083229352620706184583313
*984141389525199908877737938759
<pre class='usr'>
<pre class='usr'>
let pl = [ 12n, 101n, 4249599619n, 5175703781n,
let pl = [ 12n, 101n, 4249599619n, 5175703781n,
  35563611982942194303n, 82793885002522383103n,
  35563611982942194303n, 82793885002522383103n
629817083229352620706184583313n,
984141389525199908877737938759n
];
];
document.body.append(...
document.body.append(...
   pl.map(n=>{
   pl.map(n=>{
     let isPrime = n%2===1;
     let isPrime = n%2n===1n;
     ret = document.createElement('div');
     ret = document.createElement('div');
     ret.innerHTML = `${n} is prime: ${isPrime}`;
     ret.innerHTML = `${n} is prime: ${isPrime}`;
   });
    return ret;
   })
);
);


Line 42: Line 39:
<pre class='ans'>
<pre class='ans'>
let pl = [ 12n, 101n, 4249599619n, 5175703781n,
let pl = [ 12n, 101n, 4249599619n, 5175703781n,
  35563611982942194303n, 82793885002522383103n,
  35563611982942194303n, 82793885002522383103n
629817083229352620706184583313n,
984141389525199908877737938759n
];
];
document.body.append(...
document.body.append(...
   pl.map(n=>{
   pl.map(n=>{
     let isPrime = pow(2,n,n)===2;
     let isPrime = n%2n===1n;
     ret = document.createElement('div');
     ret = document.createElement('div');
     ret.innerHTML = `${n} is prime: ${isPrime}`;
     ret.innerHTML = `${n} is prime: ${isPrime}`;
   });
    return ret;
   })
);
);



Revision as of 20:18, 26 September 2021


Fermat's little theorem tells us that

xp mod p = x

if p is prime for x<p

The converse is that if

xp mod p ≠ x

then p is not prime. If the equality holds for some value of x then p is probably a prime. If the equality holds for two values of x then it is even more probable that p is prime. For these questions you can ignore that probability.

Probable primes

Decide which of these numbers is prime:

  • 12
  • 101
  • 4249599619
  • 5175703781
  • 35563611982942194303
  • 82793885002522383103
let pl = [ 12n, 101n, 4249599619n, 5175703781n,
 35563611982942194303n, 82793885002522383103n
];
document.body.append(...
  pl.map(n=>{
    let isPrime = n%2n===1n;
    ret = document.createElement('div');
    ret.innerHTML = `${n} is prime: ${isPrime}`;
    return ret;
  })
);

//raise n to the power e, modulo m
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  return (r*r*(e%2n===1n?n:1n))%m;
}
let pl = [ 12n, 101n, 4249599619n, 5175703781n,
 35563611982942194303n, 82793885002522383103n
];
document.body.append(...
  pl.map(n=>{
    let isPrime = n%2n===1n;
    ret = document.createElement('div');
    ret.innerHTML = `${n} is prime: ${isPrime}`;
    return ret;
  })
);

//raise n to the power e, modulo m
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  return (r*r*(e%2n===1n?n:1n))%m;
}