Difference between revisions of "Testing for prime"
Jump to navigation
Jump to search
(11 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<pre id='shellbody' data-qtp='DOM'></pre> | <pre id='shellbody' data-qtp='DOM'></pre> | ||
Fermat's little theorem tells us that | Fermat's little theorem tells us that | ||
x<sup>p</sup> mod p = x | x<sup>p</sup> mod p = x | ||
Line 8: | Line 6: | ||
The converse is that if | The converse is that if | ||
x<sup>p</sup> mod p ≠ x | x<sup>p</sup> mod p ≠ x | ||
then p is not prime. If the equality holds for some value of x then p is <i>probably</i> a prime. If the equality holds for two values of x then it is even more probable that p is prime. For these questions you can | then p is not prime. If the equality holds for some value of x then p is <i>probably</i> a prime. If the equality holds for two values of x then it is even more probable that p is prime. For these questions you can assume that if <code>2<sup>p</sup> mod p =2</code> then p is prime. | ||
==Probable primes== | |||
<div class='qu' data-width=300> | |||
Decide which of these numbers is prime: | Decide which of these numbers is prime: | ||
*12 | *12 | ||
Line 17: | Line 17: | ||
*35563611982942194303 | *35563611982942194303 | ||
*82793885002522383103 | *82793885002522383103 | ||
<pre class='usr'> | <pre class='usr'> | ||
let pl = [ 12n, 101n, 4249599619n, 5175703781n, | let pl = [ 12n, 101n, 4249599619n, 5175703781n, | ||
35563611982942194303n, 82793885002522383103n | 35563611982942194303n, 82793885002522383103n | ||
]; | ]; | ||
document.body.append(... | document.body.append(... | ||
pl.map(n=>{ | pl.map(n=>{ | ||
let isPrime = n% | let isPrime = n%2n===1n; | ||
ret = document.createElement('div'); | ret = document.createElement('div'); | ||
ret.innerHTML = `${n} is prime: ${isPrime}`; | ret.innerHTML = `${n} is prime: ${isPrime}`; | ||
}) | return ret; | ||
}) | |||
); | ); | ||
Line 42: | Line 39: | ||
<pre class='ans'> | <pre class='ans'> | ||
let pl = [ 12n, 101n, 4249599619n, 5175703781n, | let pl = [ 12n, 101n, 4249599619n, 5175703781n, | ||
35563611982942194303n, 82793885002522383103n | 35563611982942194303n, 82793885002522383103n | ||
]; | ]; | ||
document.body.append(... | document.body.append(... | ||
pl.map(n=>{ | pl.map(n=>{ | ||
let isPrime = pow( | let isPrime = pow(2n,n,n)===2n; | ||
ret = document.createElement('div'); | ret = document.createElement('div'); | ||
ret.innerHTML = `${n} is prime: ${isPrime}`; | ret.innerHTML = `${n} is prime: ${isPrime}`; | ||
}) | return ret; | ||
}) | |||
); | ); | ||
Line 59: | Line 55: | ||
let r = pow(n,e/2n,m); | let r = pow(n,e/2n,m); | ||
return (r*r*(e%2n===1n?n:1n))%m; | return (r*r*(e%2n===1n?n:1n))%m; | ||
} | |||
</pre> | |||
</div> | |||
==Prime Billion== | |||
<div class='qu' data-width=300> | |||
Find the first prime bigger than 1 billion | |||
<pre class='usr'> | |||
let b = 1000000000n; | |||
while (b%2n===0n){ | |||
b = b+1n; | |||
} | |||
document.body.innerHTML = `${b}` | |||
//raise n to the power e, modulo m | |||
function pow(n,e,m){ | |||
if (e<=0) return 1n; | |||
let r = pow(n,e/2n,m); | |||
return (r*r*(e%2n===1n?n:1n))%m; | |||
} | |||
</pre> | |||
<pre class='ans'> | |||
let b = 1000000000n; | |||
while (pow(2n,b,b)!==2n){ | |||
b = b+1n; | |||
} | |||
document.body.innerHTML = `${b}` | |||
//raise n to the power e, modulo m | |||
function pow(n,e,m){ | |||
if (e<=0) return 1n; | |||
let r = pow(n,e/2n,m); | |||
return (r*r*(e%2n===1n?n:1n))%m; | |||
} | |||
</pre> | |||
</div> | |||
==Prime Googol== | |||
<div class='qu' data-width=300> | |||
*A googol is 1 followed by 100 zeros. | |||
*Find the first prime bigger than 1 googol | |||
<pre class='usr'> | |||
let b = 1000000000n; | |||
while (b%2n===0n){ | |||
b = b+1n; | |||
} | |||
document.body.innerHTML = `${b}` | |||
//raise n to the power e, modulo m | |||
function pow(n,e,m){ | |||
if (e<=0) return 1n; | |||
let r = pow(n,e/2n,m); | |||
return (r*r*(e%2n===1n?n:1n))%m; | |||
} | |||
</pre> | |||
<pre class='ans'> | |||
let b = pow(10n,100n); | |||
while (pow(2n,b,b)!==2n){ | |||
b = b+1n; | |||
} | |||
document.body.innerHTML = `${b}` | |||
//raise n to the power e, modulo m | |||
function pow(n,e,m){ | |||
if (e<=0) return 1n; | |||
let r = pow(n,e/2n,m); | |||
let ret = r*r*(e%2n===1n?n:1n); | |||
if (m===undefined) | |||
return ret; | |||
return ret%m | |||
} | |||
</pre> | |||
</div> | |||
==Primes per Thousand== | |||
<div class='qu' data-width=300> | |||
*For the 1000 numbers from 1000000 to 1000999 how many are prime? | |||
<pre class='usr'> | |||
</pre> | |||
<pre class='ans'> | |||
let b = pow(10n,6n); | |||
let pc = 0; | |||
for(let i=0n;i<1000n;i++){ | |||
let p = b+i; | |||
if (pow(2n,p,p)===2n) | |||
pc++; | |||
} | |||
document.body.innerHTML = `${pc}` | |||
//raise n to the power e, modulo m | |||
function pow(n,e,m){ | |||
if (e<=0) return 1n; | |||
let r = pow(n,e/2n,m); | |||
let ret = r*r*(e%2n===1n?n:1n); | |||
if (m===undefined) | |||
return ret; | |||
return ret%m | |||
} | |||
</pre> | |||
</div> | |||
==Primes per Thousand Again== | |||
<div class='qu' data-width=300> | |||
*How primes are there in the thousand number starting: | |||
* 1000000 (10<sup>6</sup>),10000000,100000000, ... 1000000000000 (10<sup>12</sup>) | |||
<pre class='usr'> | |||
let ls = []; | |||
for(let j=6n;j<=12n;j++){ | |||
let b = pow(10n,j); | |||
let pc = 0; | |||
for(let i=0n;i<1000n;i++){ | |||
let p = b+i; | |||
if (p%2n!==0n) | |||
pc++; | |||
} | |||
ls.push(`<tr><td>${b}</td><td>${pc}</td></tr>`); | |||
} | |||
document.body.innerHTML = `<table>${ls.join('')}</table>` | |||
//raise n to the power e, modulo m | |||
//m is optional | |||
function pow(n,e,m){ | |||
if (e<=0) return 1n; | |||
let r = pow(n,e/2n,m); | |||
let ret = r*r*(e%2n===1n?n:1n); | |||
if (m===undefined) | |||
return ret; | |||
return ret%m | |||
} | |||
</pre> | |||
<pre class='ans'> | |||
let ls = []; | |||
for(let j=6n;j<=12n;j++){ | |||
let b = pow(10n,j); | |||
let pc = 0; | |||
for(let i=0n;i<1000n;i++){ | |||
let p = b+i; | |||
if (pow(2n,p,p)===2n) | |||
pc++; | |||
} | |||
ls.push(`<tr><td>${b}</td><td>${pc}</td></tr>`); | |||
} | |||
document.body.innerHTML = `<table>${ls.join('')}</table>` | |||
//raise n to the power e, modulo m | |||
//m is optional | |||
function pow(n,e,m){ | |||
if (e<=0) return 1n; | |||
let r = pow(n,e/2n,m); | |||
let ret = r*r*(e%2n===1n?n:1n); | |||
if (m===undefined) | |||
return ret; | |||
return ret%m | |||
} | } | ||
</pre> | </pre> | ||
</div> | </div> |
Latest revision as of 09:43, 27 September 2021
Fermat's little theorem tells us that
xp mod p = x
if p
is prime for x<p
The converse is that if
xp mod p ≠ x
then p is not prime. If the equality holds for some value of x then p is probably a prime. If the equality holds for two values of x then it is even more probable that p is prime. For these questions you can assume that if 2p mod p =2
then p is prime.
Probable primes
Decide which of these numbers is prime:
- 12
- 101
- 4249599619
- 5175703781
- 35563611982942194303
- 82793885002522383103
let pl = [ 12n, 101n, 4249599619n, 5175703781n, 35563611982942194303n, 82793885002522383103n ]; document.body.append(... pl.map(n=>{ let isPrime = n%2n===1n; ret = document.createElement('div'); ret.innerHTML = `${n} is prime: ${isPrime}`; return ret; }) ); //raise n to the power e, modulo m function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; }
let pl = [ 12n, 101n, 4249599619n, 5175703781n, 35563611982942194303n, 82793885002522383103n ]; document.body.append(... pl.map(n=>{ let isPrime = pow(2n,n,n)===2n; ret = document.createElement('div'); ret.innerHTML = `${n} is prime: ${isPrime}`; return ret; }) ); //raise n to the power e, modulo m function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; }
Prime Billion
Find the first prime bigger than 1 billion
let b = 1000000000n; while (b%2n===0n){ b = b+1n; } document.body.innerHTML = `${b}` //raise n to the power e, modulo m function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; }
let b = 1000000000n; while (pow(2n,b,b)!==2n){ b = b+1n; } document.body.innerHTML = `${b}` //raise n to the power e, modulo m function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; }
Prime Googol
- A googol is 1 followed by 100 zeros.
- Find the first prime bigger than 1 googol
let b = 1000000000n; while (b%2n===0n){ b = b+1n; } document.body.innerHTML = `${b}` //raise n to the power e, modulo m function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; }
let b = pow(10n,100n); while (pow(2n,b,b)!==2n){ b = b+1n; } document.body.innerHTML = `${b}` //raise n to the power e, modulo m function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); let ret = r*r*(e%2n===1n?n:1n); if (m===undefined) return ret; return ret%m }
Primes per Thousand
- For the 1000 numbers from 1000000 to 1000999 how many are prime?
let b = pow(10n,6n); let pc = 0; for(let i=0n;i<1000n;i++){ let p = b+i; if (pow(2n,p,p)===2n) pc++; } document.body.innerHTML = `${pc}` //raise n to the power e, modulo m function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); let ret = r*r*(e%2n===1n?n:1n); if (m===undefined) return ret; return ret%m }
Primes per Thousand Again
- How primes are there in the thousand number starting:
- 1000000 (106),10000000,100000000, ... 1000000000000 (1012)
let ls = []; for(let j=6n;j<=12n;j++){ let b = pow(10n,j); let pc = 0; for(let i=0n;i<1000n;i++){ let p = b+i; if (p%2n!==0n) pc++; } ls.push(`<tr><td>${b}</td><td>${pc}</td></tr>`); } document.body.innerHTML = `<table>${ls.join('')}</table>` //raise n to the power e, modulo m //m is optional function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); let ret = r*r*(e%2n===1n?n:1n); if (m===undefined) return ret; return ret%m }
let ls = []; for(let j=6n;j<=12n;j++){ let b = pow(10n,j); let pc = 0; for(let i=0n;i<1000n;i++){ let p = b+i; if (pow(2n,p,p)===2n) pc++; } ls.push(`<tr><td>${b}</td><td>${pc}</td></tr>`); } document.body.innerHTML = `<table>${ls.join('')}</table>` //raise n to the power e, modulo m //m is optional function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); let ret = r*r*(e%2n===1n?n:1n); if (m===undefined) return ret; return ret%m }