Difference between revisions of "Testing for prime"

From ProgZoo
Jump to navigation Jump to search
(Created page with "<pre id='shellbody' data-qtp='DOM'></pre> ==Probable primes== <div class='qu' data-width=300> Fermat's little theorem tells us that x<sup>p</sup> mod p = x if <code>p</code>...")
 
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
<pre id='shellbody' data-qtp='DOM'></pre>
<pre id='shellbody' data-qtp='DOM'></pre>
==Probable primes==
<div class='qu' data-width=300>
Fermat's little theorem tells us that
Fermat's little theorem tells us that
  x<sup>p</sup> mod p = x
  x<sup>p</sup> mod p = x
Line 8: Line 6:
The converse is that if
The converse is that if
  x<sup>p</sup> mod p &ne; x
  x<sup>p</sup> mod p &ne; x
the p is not prime
then p is not prime. If the equality holds for some value of x then p is <i>probably</i> a prime. If the equality holds for two values of x then it is even more probable that p is prime. For these questions you can assume that if <code>2<sup>p</sup> mod p =2</code> then p is prime.


Verify this by trying prime and non-prime values for p. You can can generate prime numbers from https://bigprimes.org/
==Probable primes==
<div class='qu' data-width=300>
Decide which of these numbers is prime:
*12
*101
*4249599619
*5175703781
*35563611982942194303
*82793885002522383103
<pre class='usr'>
<pre class='usr'>
document.body.append(
let pl = [ 12n, 101n, 4249599619n, 5175703781n,
   mkInput('p','101'),
35563611982942194303n, 82793885002522383103n
  mkInput('m','3'),
];
  $m('button',{onclick:function(){
document.body.append(...
     document.getElementById('result').value =
   pl.map(n=>{
      pow(getbig('m'),getbig('p'),getbig('p'));
    let isPrime = n%2n===1n;
  }},`m<sup>p</sup> mod p`),
     ret = document.createElement('div');
   $m('input',{id:'result'})
    ret.innerHTML = `${n} is prime: ${isPrime}`;
    return ret;
   })
);
);


Line 28: Line 36:
   return (r*r*(e%2n===1n?n:1n))%m;
   return (r*r*(e%2n===1n?n:1n))%m;
}
}
</pre>
<pre class='ans'>
let pl = [ 12n, 101n, 4249599619n, 5175703781n,
35563611982942194303n, 82793885002522383103n
];
document.body.append(...
  pl.map(n=>{
    let isPrime = pow(2n,n,n)===2n;
    ret = document.createElement('div');
    ret.innerHTML = `${n} is prime: ${isPrime}`;
    return ret;
  })
);


//Create an element with tagname and properties
//raise n to the power e, modulo m
//children can be a string (innerHTML) or a list of elements
function pow(n,e,m){
function $m(tag,prop,children){
   if (e<=0) return 1n;
   let ret = document.createElement(tag);
   let r = pow(n,e/2n,m);
   for(let k in prop)
   return (r*r*(e%2n===1n?n:1n))%m;
    ret[k] = prop[k];
   if (typeof(children)==='string')
    ret.innerHTML = children;
  if (Array.isArray(children))
    for(let c of children)
      ret.append(c);
  return ret;
}
}
//Get the value in element with id, convert it to a BigInt
</pre>
function getbig(id){return BigInt(document.getElementById(id).value)}
</div>
//Return a div containing label and input. id is shown in the label
 
function mkInput(id,value){
==Prime Billion==
   return $m('div',{},[$m('label',{},id),$m('input',{id,value})]);
<div class='qu' data-width=300>
Find the first prime bigger than 1 billion
<pre class='usr'>
let b = 1000000000n;
while (b%2n===0n){
  b = b+1n;
}
document.body.innerHTML = `${b}`
 
//raise n to the power e, modulo m
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  return (r*r*(e%2n===1n?n:1n))%m;
}
</pre>
<pre class='ans'>
let b = 1000000000n;
while (pow(2n,b,b)!==2n){
  b = b+1n;
}
document.body.innerHTML = `${b}`
 
//raise n to the power e, modulo m
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  return (r*r*(e%2n===1n?n:1n))%m;
}
</pre>
</div>
 
==Prime Googol==
<div class='qu' data-width=300>
*A googol is 1 followed by 100 zeros.
*Find the first prime bigger than 1 googol
<pre class='usr'>
let b = 1000000000n;
while (b%2n===0n){
  b = b+1n;
}
document.body.innerHTML = `${b}`
 
//raise n to the power e, modulo m
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
   return (r*r*(e%2n===1n?n:1n))%m;
}
</pre>
<pre class='ans'>
let b = pow(10n,100n);
while (pow(2n,b,b)!==2n){
  b = b+1n;
}
document.body.innerHTML = `${b}`
 
//raise n to the power e, modulo m
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  let ret = r*r*(e%2n===1n?n:1n);
  if (m===undefined)
    return ret;
  return ret%m
}
</pre>
</div>
 
==Primes per Thousand==
<div class='qu' data-width=300>
*For the 1000 numbers from 1000000 to 1000999 how many are prime?
<pre class='usr'>
</pre>
<pre class='ans'>
let b = pow(10n,6n);
let pc = 0;
for(let i=0n;i<1000n;i++){
  let p = b+i;
  if (pow(2n,p,p)===2n)
    pc++;
}
document.body.innerHTML = `${pc}`
 
//raise n to the power e, modulo m
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  let ret = r*r*(e%2n===1n?n:1n);
  if (m===undefined)
    return ret;
  return ret%m
}
</pre>
</div>
 
==Primes per Thousand Again==
<div class='qu' data-width=300>
*How primes are there in the thousand number starting:
* 1000000 (10<sup>6</sup>),10000000,100000000, ... 1000000000000 (10<sup>12</sup>)
<pre class='usr'>
let ls = [];
for(let j=6n;j<=12n;j++){
  let b = pow(10n,j);
  let pc = 0;
  for(let i=0n;i<1000n;i++){
    let p = b+i;
    if (p%2n!==0n)
      pc++;
  }
  ls.push(`<tr><td>${b}</td><td>${pc}</td></tr>`);
}
document.body.innerHTML = `<table>${ls.join('')}</table>`
 
//raise n to the power e, modulo m
//m is optional
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  let ret = r*r*(e%2n===1n?n:1n);
  if (m===undefined)
    return ret;
  return ret%m
}
</pre>
<pre class='ans'>
let ls = [];
for(let j=6n;j<=12n;j++){
  let b = pow(10n,j);
  let pc = 0;
  for(let i=0n;i<1000n;i++){
    let p = b+i;
    if (pow(2n,p,p)===2n)
      pc++;
  }
  ls.push(`<tr><td>${b}</td><td>${pc}</td></tr>`);
}
document.body.innerHTML = `<table>${ls.join('')}</table>`
 
//raise n to the power e, modulo m
//m is optional
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  let ret = r*r*(e%2n===1n?n:1n);
  if (m===undefined)
    return ret;
  return ret%m
}
}
</pre>
</pre>
</div>
</div>

Latest revision as of 09:43, 27 September 2021


Fermat's little theorem tells us that

xp mod p = x

if p is prime for x<p

The converse is that if

xp mod p ≠ x

then p is not prime. If the equality holds for some value of x then p is probably a prime. If the equality holds for two values of x then it is even more probable that p is prime. For these questions you can assume that if 2p mod p =2 then p is prime.

Probable primes

Decide which of these numbers is prime:

  • 12
  • 101
  • 4249599619
  • 5175703781
  • 35563611982942194303
  • 82793885002522383103
let pl = [ 12n, 101n, 4249599619n, 5175703781n,
 35563611982942194303n, 82793885002522383103n
];
document.body.append(...
  pl.map(n=>{
    let isPrime = n%2n===1n;
    ret = document.createElement('div');
    ret.innerHTML = `${n} is prime: ${isPrime}`;
    return ret;
  })
);

//raise n to the power e, modulo m
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  return (r*r*(e%2n===1n?n:1n))%m;
}
let pl = [ 12n, 101n, 4249599619n, 5175703781n,
 35563611982942194303n, 82793885002522383103n
];
document.body.append(...
  pl.map(n=>{
    let isPrime = pow(2n,n,n)===2n;
    ret = document.createElement('div');
    ret.innerHTML = `${n} is prime: ${isPrime}`;
    return ret;
  })
);

//raise n to the power e, modulo m
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  return (r*r*(e%2n===1n?n:1n))%m;
}

Prime Billion

Find the first prime bigger than 1 billion

let b = 1000000000n;
while (b%2n===0n){
  b = b+1n;
}
document.body.innerHTML = `${b}`

//raise n to the power e, modulo m
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  return (r*r*(e%2n===1n?n:1n))%m;
}
let b = 1000000000n;
while (pow(2n,b,b)!==2n){
  b = b+1n;
}
document.body.innerHTML = `${b}`

//raise n to the power e, modulo m
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  return (r*r*(e%2n===1n?n:1n))%m;
}

Prime Googol

  • A googol is 1 followed by 100 zeros.
  • Find the first prime bigger than 1 googol
let b = 1000000000n;
while (b%2n===0n){
  b = b+1n;
}
document.body.innerHTML = `${b}`

//raise n to the power e, modulo m
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  return (r*r*(e%2n===1n?n:1n))%m;
}
let b = pow(10n,100n);
while (pow(2n,b,b)!==2n){
  b = b+1n;
}
document.body.innerHTML = `${b}`

//raise n to the power e, modulo m
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  let ret = r*r*(e%2n===1n?n:1n);
  if (m===undefined)
    return ret;
  return ret%m
}

Primes per Thousand

  • For the 1000 numbers from 1000000 to 1000999 how many are prime?

let b = pow(10n,6n);
let pc = 0;
for(let i=0n;i<1000n;i++){
  let p = b+i;
  if (pow(2n,p,p)===2n)
    pc++;
}
document.body.innerHTML = `${pc}`

//raise n to the power e, modulo m
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  let ret = r*r*(e%2n===1n?n:1n);
  if (m===undefined)
    return ret;
  return ret%m
}

Primes per Thousand Again

  • How primes are there in the thousand number starting:
  • 1000000 (106),10000000,100000000, ... 1000000000000 (1012)
let ls = [];
for(let j=6n;j<=12n;j++){
  let b = pow(10n,j);
  let pc = 0;
  for(let i=0n;i<1000n;i++){
    let p = b+i;
    if (p%2n!==0n)
      pc++;
  }
  ls.push(`<tr><td>${b}</td><td>${pc}</td></tr>`);
}
document.body.innerHTML = `<table>${ls.join('')}</table>`

//raise n to the power e, modulo m
//m is optional
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  let ret = r*r*(e%2n===1n?n:1n);
  if (m===undefined)
    return ret;
  return ret%m
}
let ls = [];
for(let j=6n;j<=12n;j++){
  let b = pow(10n,j);
  let pc = 0;
  for(let i=0n;i<1000n;i++){
    let p = b+i;
    if (pow(2n,p,p)===2n)
      pc++;
  }
  ls.push(`<tr><td>${b}</td><td>${pc}</td></tr>`);
}
document.body.innerHTML = `<table>${ls.join('')}</table>`

//raise n to the power e, modulo m
//m is optional
function pow(n,e,m){
  if (e<=0) return 1n;
  let r = pow(n,e/2n,m);
  let ret = r*r*(e%2n===1n?n:1n);
  if (m===undefined)
    return ret;
  return ret%m
}