Testing for prime: Difference between revisions
Jump to navigation
Jump to search
| Line 43: | Line 43: | ||
document.body.append(... | document.body.append(... | ||
pl.map(n=>{ | pl.map(n=>{ | ||
let isPrime = n | let isPrime = pow(2n,n,n)===2n; | ||
ret = document.createElement('div'); | ret = document.createElement('div'); | ||
ret.innerHTML = `${n} is prime: ${isPrime}`; | ret.innerHTML = `${n} is prime: ${isPrime}`; | ||
Revision as of 20:19, 26 September 2021
Fermat's little theorem tells us that
xp mod p = x
if p is prime for x<p
The converse is that if
xp mod p ≠ x
then p is not prime. If the equality holds for some value of x then p is probably a prime. If the equality holds for two values of x then it is even more probable that p is prime. For these questions you can ignore that probability.
Probable primes
Decide which of these numbers is prime:
- 12
- 101
- 4249599619
- 5175703781
- 35563611982942194303
- 82793885002522383103
let pl = [ 12n, 101n, 4249599619n, 5175703781n,
35563611982942194303n, 82793885002522383103n
];
document.body.append(...
pl.map(n=>{
let isPrime = n%2n===1n;
ret = document.createElement('div');
ret.innerHTML = `${n} is prime: ${isPrime}`;
return ret;
})
);
//raise n to the power e, modulo m
function pow(n,e,m){
if (e<=0) return 1n;
let r = pow(n,e/2n,m);
return (r*r*(e%2n===1n?n:1n))%m;
}
let pl = [ 12n, 101n, 4249599619n, 5175703781n,
35563611982942194303n, 82793885002522383103n
];
document.body.append(...
pl.map(n=>{
let isPrime = pow(2n,n,n)===2n;
ret = document.createElement('div');
ret.innerHTML = `${n} is prime: ${isPrime}`;
return ret;
})
);
//raise n to the power e, modulo m
function pow(n,e,m){
if (e<=0) return 1n;
let r = pow(n,e/2n,m);
return (r*r*(e%2n===1n?n:1n))%m;
}