Testing for prime
Probable primes
Fermat's little theorem tells us that
xp mod p = x
if p
is prime for x<p
The converse is that if
xp mod p ≠ x
then p is not prime. If the equality holds for some value of x then p is probably a prime. If the equality holds for two values of x then it is even more probable that p is prime. For these questions you can ignore that probability.
Decide which of these numbers is prime:
- 12
- 101
- 4249599619
- 5175703781
- 35563611982942194303
- 82793885002522383103
- 629817083229352620706184583313
- 984141389525199908877737938759
let pl = [ 12n, 101n, 4249599619n, 5175703781n, 35563611982942194303n, 82793885002522383103n, 629817083229352620706184583313n, 984141389525199908877737938759n ]; document.body.append(... pl.map(n=>{ let isPrime = n%2===1; ret = document.createElement('div'); ret.innerHTML = `${n} is prime: ${isPrime}`; }); ); //raise n to the power e, modulo m function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; }
let pl = [ 12n, 101n, 4249599619n, 5175703781n, 35563611982942194303n, 82793885002522383103n, 629817083229352620706184583313n, 984141389525199908877737938759n ]; document.body.append(... pl.map(n=>{ let isPrime = pow(2,n,n)===2; ret = document.createElement('div'); ret.innerHTML = `${n} is prime: ${isPrime}`; }); ); //raise n to the power e, modulo m function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; }