Testing for prime
Fermat's little theorem tells us that
xp mod p = x
if p
is prime for x<p
The converse is that if
xp mod p ≠ x
then p is not prime. If the equality holds for some value of x then p is probably a prime. If the equality holds for two values of x then it is even more probable that p is prime. For these questions you can ignore that probability.
Probable primes
Decide which of these numbers is prime:
- 12
- 101
- 4249599619
- 5175703781
- 35563611982942194303
- 82793885002522383103
let pl = [ 12n, 101n, 4249599619n, 5175703781n, 35563611982942194303n, 82793885002522383103n ]; document.body.append(... pl.map(n=>{ let isPrime = n%2n===1n; ret = document.createElement('div'); ret.innerHTML = `${n} is prime: ${isPrime}`; return ret; }) ); //raise n to the power e, modulo m function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; }
let pl = [ 12n, 101n, 4249599619n, 5175703781n, 35563611982942194303n, 82793885002522383103n ]; document.body.append(... pl.map(n=>{ let isPrime = n%2n===1n; ret = document.createElement('div'); ret.innerHTML = `${n} is prime: ${isPrime}`; return ret; }) ); //raise n to the power e, modulo m function pow(n,e,m){ if (e<=0) return 1n; let r = pow(n,e/2n,m); return (r*r*(e%2n===1n?n:1n))%m; }